الصفحة الرئيسية
الأقسام العلمية
قسم تقنية المعلومات
قسم علوم الحاسبات
قسم نظم المعلومات
طلابنا
قسم بروشورات الطلاب
وحدة مهارات الحاسب
طلاب الكلية المتفوقين
صفحة الإعلانات الخاصة بطلاب الكلية
خريجو الدفعة الأولى
دفعة 2009
دفعة 2010
دفعة 2011
دفعة 2012
إنجازات الطلاب الخريجين
عمر احمد المحمودي
عمر الحموي
الإرشاد الأكاديمي
معلومات عن الإرشاد الأكاديمي
المر شدون الأكاديميون
معلومات عن تسجيل الموار
حضور المحا ضرات
أسئلة متكررة
أبحاث وأنشطة أكاديمية
الأبحاث
مشاريع بحثية
لعام 1431/1432
لعام 1430/1431
المجموعات البحثية
جائزة أفضل ورقة بحثية في كلية الحاسبات برابغ
المجموعة البحثية الخاصة بعلوم الحاسبات النظرية
المجموعة البحثية الخاصة بالذكاء الإصطناعي والحوسبة
المجموعة البحثية الخاصة بالأحياء الحسابية
مؤتمرات وورش العمل
اكتوبر ٢٠٠٩
نوفمبر ٢٠٠٩
ديسمبر ٢٠٠٩
يناير ٢٠١٠
فبراير ٢٠١٠
مزيد ٢٠١٠
الفصل الثاني 2011
2012
2013
2014
لجنة الإعتماد الأكاديمي ABET
أنشطة نادي كلية الحاسبات برابغ – شطر الطالبات
أنشطة 1434-1435
أنشطة الفصل الثاني1434/ 1435 هـ
النشر العامىي
قسم تقنية المعلومات النشر العامىي
الشراكات المجتمعية
الخدمات الإلكترونية
عمادة تقنية المعلومات
عمادة البحث العلمي
عمادة شؤون المكتبات
عمادة القبول والتسجيل
SIS
تخطيط استراتيجي
نموذج حجز المسرح
الأخبار والفعاليات
آخر الأخبار
عن الكلية
عربي
English
عن الجامعة
القبول
الأكاديمية
البحث والإبتكار
الحياة الجامعية
الخدمات الإلكترونية
صفحة البحث
كلية الحاسبات وتقنية المعلومات برابغ
تفاصيل الوثيقة
نوع الوثيقة
:
مقال في مجلة دورية
عنوان الوثيقة
:
A Linear Model Based on Kalman Filter for Improving Neural Network Classification Performance
A Linear Model Based on Kalman Filter for Improving Neural Network Classification Performance
الموضوع
:
علوم حاسبات
لغة الوثيقة
:
الانجليزية
المستخلص
:
Neural network has been applied in several classification problems such as in medical diagnosis, handwriting recognition, and product inspection, with a good classification performance. The performance of a neural network is characterized by the neural network's structure, transfer function, and learning algorithm. However, a neural network classifier tends to be weak if it uses an inappropriate structure. The neural network's structure depends on the complexity of the relationship between the input and the output. There are no exact rules that can be used to determine the neural network's structure. Therefore, studies in improving neural network classification performance without changing the neural network's structure is a challenging issue. This paper proposes a method to improve neural network classification performance by constructing a linear model based on the Kalman filter as a post processing. The linear model transforms the predicted output of the neural network to a value close to the desired output by using the linear combination of the object features and the predicted output. This simple transformation will reduce the error of neural network and improve classification performance. The Kalman filter iteration is used to estimate the parameters of the linear model. Five datasets from various domains with various characteristics, such as attribute types, the number of attributes, the number of samples, and the number of classes, were used for empirical validation. The validation results show that the linear model based on the Kalman filter can improve the performance of the original neural network.
ردمد
:
0957-4174
اسم الدورية
:
Expert Systems With Applications
المجلد
:
19
العدد
:
2016
سنة النشر
:
1437 هـ
2016 م
نوع المقالة
:
مقالة علمية
تاريخ الاضافة على الموقع
:
Tuesday, March 8, 2016
الباحثون
اسم الباحث (عربي)
اسم الباحث (انجليزي)
نوع الباحث
المرتبة العلمية
البريد الالكتروني
Anton Satria Prabuwono
Satria Prabuwono, Anton
باحث
دكتوراه
antonsatria@eu4m.eu
الملفات
اسم الملف
النوع
الوصف
38359.pdf
pdf
الرجوع إلى صفحة الأبحاث